feat: AI聊天室多Agent协作讨论平台
- 实现Agent管理,支持AI辅助生成系统提示词 - 支持多个AI提供商(OpenRouter、智谱、MiniMax等) - 实现聊天室和讨论引擎 - WebSocket实时消息推送 - 前端使用React + Ant Design - 后端使用FastAPI + MongoDB Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
250
backend/adapters/gemini_adapter.py
Normal file
250
backend/adapters/gemini_adapter.py
Normal file
@@ -0,0 +1,250 @@
|
||||
"""
|
||||
Gemini适配器
|
||||
支持Google Gemini大模型API
|
||||
"""
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import List, Dict, Any, Optional, AsyncGenerator
|
||||
from loguru import logger
|
||||
|
||||
from .base_adapter import BaseAdapter, ChatMessage, AdapterResponse
|
||||
from utils.proxy_handler import get_http_client
|
||||
|
||||
|
||||
class GeminiAdapter(BaseAdapter):
|
||||
"""
|
||||
Google Gemini API适配器
|
||||
使用Gemini的原生API格式
|
||||
"""
|
||||
|
||||
DEFAULT_BASE_URL = "https://generativelanguage.googleapis.com/v1beta"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
base_url: str = "",
|
||||
model: str = "gemini-1.5-pro",
|
||||
use_proxy: bool = True, # Gemini通常需要代理
|
||||
proxy_config: Optional[Dict[str, Any]] = None,
|
||||
timeout: int = 60,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
api_key=api_key,
|
||||
base_url=base_url or self.DEFAULT_BASE_URL,
|
||||
model=model,
|
||||
use_proxy=use_proxy,
|
||||
proxy_config=proxy_config,
|
||||
timeout=timeout,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
def _convert_messages_to_gemini(
|
||||
self,
|
||||
messages: List[ChatMessage]
|
||||
) -> tuple[str, List[Dict[str, Any]]]:
|
||||
"""
|
||||
将消息转换为Gemini格式
|
||||
|
||||
Args:
|
||||
messages: 标准消息列表
|
||||
|
||||
Returns:
|
||||
(system_instruction, contents)
|
||||
"""
|
||||
system_instruction = ""
|
||||
contents = []
|
||||
|
||||
for msg in messages:
|
||||
if msg.role == "system":
|
||||
system_instruction += msg.content + "\n"
|
||||
else:
|
||||
role = "user" if msg.role == "user" else "model"
|
||||
contents.append({
|
||||
"role": role,
|
||||
"parts": [{"text": msg.content}]
|
||||
})
|
||||
|
||||
return system_instruction.strip(), contents
|
||||
|
||||
async def chat(
|
||||
self,
|
||||
messages: List[ChatMessage],
|
||||
temperature: float = 0.7,
|
||||
max_tokens: int = 2000,
|
||||
**kwargs
|
||||
) -> AdapterResponse:
|
||||
"""发送聊天请求"""
|
||||
start_time = datetime.utcnow()
|
||||
|
||||
try:
|
||||
async with get_http_client(
|
||||
use_proxy=self.use_proxy,
|
||||
proxy_config=self.proxy_config,
|
||||
timeout=self.timeout
|
||||
) as client:
|
||||
system_instruction, contents = self._convert_messages_to_gemini(messages)
|
||||
|
||||
payload = {
|
||||
"contents": contents,
|
||||
"generationConfig": {
|
||||
"temperature": temperature,
|
||||
"maxOutputTokens": max_tokens,
|
||||
"topP": kwargs.get("top_p", 0.95),
|
||||
"topK": kwargs.get("top_k", 40)
|
||||
}
|
||||
}
|
||||
|
||||
# 添加系统指令
|
||||
if system_instruction:
|
||||
payload["systemInstruction"] = {
|
||||
"parts": [{"text": system_instruction}]
|
||||
}
|
||||
|
||||
url = f"{self.base_url}/models/{self.model}:generateContent?key={self.api_key}"
|
||||
|
||||
response = await client.post(
|
||||
url,
|
||||
json=payload
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
error_text = response.text
|
||||
logger.error(f"Gemini API错误: {response.status_code} - {error_text}")
|
||||
return AdapterResponse(
|
||||
success=False,
|
||||
error=f"API错误: {response.status_code} - {error_text}",
|
||||
latency_ms=self._calculate_latency(start_time)
|
||||
)
|
||||
|
||||
data = response.json()
|
||||
|
||||
# 检查是否有候选回复
|
||||
candidates = data.get("candidates", [])
|
||||
if not candidates:
|
||||
return AdapterResponse(
|
||||
success=False,
|
||||
error="没有生成回复",
|
||||
latency_ms=self._calculate_latency(start_time)
|
||||
)
|
||||
|
||||
candidate = candidates[0]
|
||||
content = candidate.get("content", {})
|
||||
parts = content.get("parts", [])
|
||||
text = "".join(part.get("text", "") for part in parts)
|
||||
|
||||
# 获取token使用情况
|
||||
usage = data.get("usageMetadata", {})
|
||||
|
||||
return AdapterResponse(
|
||||
success=True,
|
||||
content=text,
|
||||
model=self.model,
|
||||
finish_reason=candidate.get("finishReason", ""),
|
||||
prompt_tokens=usage.get("promptTokenCount", 0),
|
||||
completion_tokens=usage.get("candidatesTokenCount", 0),
|
||||
total_tokens=usage.get("totalTokenCount", 0),
|
||||
latency_ms=self._calculate_latency(start_time)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Gemini请求异常: {e}")
|
||||
return AdapterResponse(
|
||||
success=False,
|
||||
error=str(e),
|
||||
latency_ms=self._calculate_latency(start_time)
|
||||
)
|
||||
|
||||
async def chat_stream(
|
||||
self,
|
||||
messages: List[ChatMessage],
|
||||
temperature: float = 0.7,
|
||||
max_tokens: int = 2000,
|
||||
**kwargs
|
||||
) -> AsyncGenerator[str, None]:
|
||||
"""发送流式聊天请求"""
|
||||
try:
|
||||
async with get_http_client(
|
||||
use_proxy=self.use_proxy,
|
||||
proxy_config=self.proxy_config,
|
||||
timeout=self.timeout
|
||||
) as client:
|
||||
system_instruction, contents = self._convert_messages_to_gemini(messages)
|
||||
|
||||
payload = {
|
||||
"contents": contents,
|
||||
"generationConfig": {
|
||||
"temperature": temperature,
|
||||
"maxOutputTokens": max_tokens,
|
||||
"topP": kwargs.get("top_p", 0.95),
|
||||
"topK": kwargs.get("top_k", 40)
|
||||
}
|
||||
}
|
||||
|
||||
if system_instruction:
|
||||
payload["systemInstruction"] = {
|
||||
"parts": [{"text": system_instruction}]
|
||||
}
|
||||
|
||||
url = f"{self.base_url}/models/{self.model}:streamGenerateContent?key={self.api_key}&alt=sse"
|
||||
|
||||
async with client.stream(
|
||||
"POST",
|
||||
url,
|
||||
json=payload
|
||||
) as response:
|
||||
async for line in response.aiter_lines():
|
||||
if line.startswith("data: "):
|
||||
data_str = line[6:]
|
||||
try:
|
||||
data = json.loads(data_str)
|
||||
candidates = data.get("candidates", [])
|
||||
if candidates:
|
||||
content = candidates[0].get("content", {})
|
||||
parts = content.get("parts", [])
|
||||
for part in parts:
|
||||
text = part.get("text", "")
|
||||
if text:
|
||||
yield text
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Gemini流式请求异常: {e}")
|
||||
yield f"[错误: {str(e)}]"
|
||||
|
||||
async def test_connection(self) -> Dict[str, Any]:
|
||||
"""测试API连接"""
|
||||
start_time = datetime.utcnow()
|
||||
|
||||
try:
|
||||
test_messages = [
|
||||
ChatMessage(role="user", content="Hello, respond with 'OK'")
|
||||
]
|
||||
|
||||
response = await self.chat(
|
||||
messages=test_messages,
|
||||
temperature=0,
|
||||
max_tokens=10
|
||||
)
|
||||
|
||||
if response.success:
|
||||
return {
|
||||
"success": True,
|
||||
"message": "连接成功",
|
||||
"model": response.model,
|
||||
"latency_ms": response.latency_ms
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"success": False,
|
||||
"message": response.error,
|
||||
"latency_ms": response.latency_ms
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"success": False,
|
||||
"message": str(e),
|
||||
"latency_ms": self._calculate_latency(start_time)
|
||||
}
|
||||
Reference in New Issue
Block a user