Files
AIChatRoom/backend/adapters/gemini_adapter.py
Claude Code edbddf855d feat: AI聊天室多Agent协作讨论平台
- 实现Agent管理,支持AI辅助生成系统提示词
- 支持多个AI提供商(OpenRouter、智谱、MiniMax等)
- 实现聊天室和讨论引擎
- WebSocket实时消息推送
- 前端使用React + Ant Design
- 后端使用FastAPI + MongoDB

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-03 19:20:02 +08:00

251 lines
8.7 KiB
Python

"""
Gemini适配器
支持Google Gemini大模型API
"""
import json
from datetime import datetime
from typing import List, Dict, Any, Optional, AsyncGenerator
from loguru import logger
from .base_adapter import BaseAdapter, ChatMessage, AdapterResponse
from utils.proxy_handler import get_http_client
class GeminiAdapter(BaseAdapter):
"""
Google Gemini API适配器
使用Gemini的原生API格式
"""
DEFAULT_BASE_URL = "https://generativelanguage.googleapis.com/v1beta"
def __init__(
self,
api_key: str,
base_url: str = "",
model: str = "gemini-1.5-pro",
use_proxy: bool = True, # Gemini通常需要代理
proxy_config: Optional[Dict[str, Any]] = None,
timeout: int = 60,
**kwargs
):
super().__init__(
api_key=api_key,
base_url=base_url or self.DEFAULT_BASE_URL,
model=model,
use_proxy=use_proxy,
proxy_config=proxy_config,
timeout=timeout,
**kwargs
)
def _convert_messages_to_gemini(
self,
messages: List[ChatMessage]
) -> tuple[str, List[Dict[str, Any]]]:
"""
将消息转换为Gemini格式
Args:
messages: 标准消息列表
Returns:
(system_instruction, contents)
"""
system_instruction = ""
contents = []
for msg in messages:
if msg.role == "system":
system_instruction += msg.content + "\n"
else:
role = "user" if msg.role == "user" else "model"
contents.append({
"role": role,
"parts": [{"text": msg.content}]
})
return system_instruction.strip(), contents
async def chat(
self,
messages: List[ChatMessage],
temperature: float = 0.7,
max_tokens: int = 2000,
**kwargs
) -> AdapterResponse:
"""发送聊天请求"""
start_time = datetime.utcnow()
try:
async with get_http_client(
use_proxy=self.use_proxy,
proxy_config=self.proxy_config,
timeout=self.timeout
) as client:
system_instruction, contents = self._convert_messages_to_gemini(messages)
payload = {
"contents": contents,
"generationConfig": {
"temperature": temperature,
"maxOutputTokens": max_tokens,
"topP": kwargs.get("top_p", 0.95),
"topK": kwargs.get("top_k", 40)
}
}
# 添加系统指令
if system_instruction:
payload["systemInstruction"] = {
"parts": [{"text": system_instruction}]
}
url = f"{self.base_url}/models/{self.model}:generateContent?key={self.api_key}"
response = await client.post(
url,
json=payload
)
if response.status_code != 200:
error_text = response.text
logger.error(f"Gemini API错误: {response.status_code} - {error_text}")
return AdapterResponse(
success=False,
error=f"API错误: {response.status_code} - {error_text}",
latency_ms=self._calculate_latency(start_time)
)
data = response.json()
# 检查是否有候选回复
candidates = data.get("candidates", [])
if not candidates:
return AdapterResponse(
success=False,
error="没有生成回复",
latency_ms=self._calculate_latency(start_time)
)
candidate = candidates[0]
content = candidate.get("content", {})
parts = content.get("parts", [])
text = "".join(part.get("text", "") for part in parts)
# 获取token使用情况
usage = data.get("usageMetadata", {})
return AdapterResponse(
success=True,
content=text,
model=self.model,
finish_reason=candidate.get("finishReason", ""),
prompt_tokens=usage.get("promptTokenCount", 0),
completion_tokens=usage.get("candidatesTokenCount", 0),
total_tokens=usage.get("totalTokenCount", 0),
latency_ms=self._calculate_latency(start_time)
)
except Exception as e:
logger.error(f"Gemini请求异常: {e}")
return AdapterResponse(
success=False,
error=str(e),
latency_ms=self._calculate_latency(start_time)
)
async def chat_stream(
self,
messages: List[ChatMessage],
temperature: float = 0.7,
max_tokens: int = 2000,
**kwargs
) -> AsyncGenerator[str, None]:
"""发送流式聊天请求"""
try:
async with get_http_client(
use_proxy=self.use_proxy,
proxy_config=self.proxy_config,
timeout=self.timeout
) as client:
system_instruction, contents = self._convert_messages_to_gemini(messages)
payload = {
"contents": contents,
"generationConfig": {
"temperature": temperature,
"maxOutputTokens": max_tokens,
"topP": kwargs.get("top_p", 0.95),
"topK": kwargs.get("top_k", 40)
}
}
if system_instruction:
payload["systemInstruction"] = {
"parts": [{"text": system_instruction}]
}
url = f"{self.base_url}/models/{self.model}:streamGenerateContent?key={self.api_key}&alt=sse"
async with client.stream(
"POST",
url,
json=payload
) as response:
async for line in response.aiter_lines():
if line.startswith("data: "):
data_str = line[6:]
try:
data = json.loads(data_str)
candidates = data.get("candidates", [])
if candidates:
content = candidates[0].get("content", {})
parts = content.get("parts", [])
for part in parts:
text = part.get("text", "")
if text:
yield text
except json.JSONDecodeError:
continue
except Exception as e:
logger.error(f"Gemini流式请求异常: {e}")
yield f"[错误: {str(e)}]"
async def test_connection(self) -> Dict[str, Any]:
"""测试API连接"""
start_time = datetime.utcnow()
try:
test_messages = [
ChatMessage(role="user", content="Hello, respond with 'OK'")
]
response = await self.chat(
messages=test_messages,
temperature=0,
max_tokens=10
)
if response.success:
return {
"success": True,
"message": "连接成功",
"model": response.model,
"latency_ms": response.latency_ms
}
else:
return {
"success": False,
"message": response.error,
"latency_ms": response.latency_ms
}
except Exception as e:
return {
"success": False,
"message": str(e),
"latency_ms": self._calculate_latency(start_time)
}